liometer (Gallenkamp) using a thermistor sensing in boiling benzene and carbon tetrachloride.

Synthetic Reactions. Reaction of Gallium Isopropoxide with Acetyl Chloride in Molar Ratio 1:1.—Acetyl chloride (0.54 g) was added in two or three lots to a solution of gallium isopropoxide (1.67 g) in dry benzene (20 g). An exothermic reaction took place. The mixture was refluxed for 2 hr at a bath temperature of 90–100°. On cooling, nothing appeared to crystallize. The excess benzene was therefore distilled out under reduced pressure. Finally a white solid (1.51 g, yield 100%) was obtained by drying the product for 3 hr at 0.1 mm pressure at room temperature (25°). Anal. Calcd for Ga(*i*-C₃H₇O)₂Cl: Ga, 31.23; Cl, 15.91; *i*-C₃H₇O, 52.86. Found: Ga, 31.18; Cl, 15.87; *i*-C₃H₇O, 52.1.

The compound (0.41 g) was distilled at $110^{\circ} (0.4 \text{ mm})$ to give a colorless liquid (0.28 g) which solidified after a few minutes. *Anal.* Found: Ga, 31.15; Cl, 15.85; *i*-C₃H₇O, 51.84. The melting point of this compound is 74.75°. The analogous bromo derivative melts at 95–96°.

The general method of synthesis was the same in every case; hence the other derivatives are described in Table II.

Acknowledgments. S. R. B. is grateful to the C.S.I.R., New Delhi, for the award of a Junior Research Fellowship. The authors' thanks are due to Dr. V. K. Mathur for discussion of the infrared spectra.

Contribution from Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California

Difluoramine: Reactions with Chlorine Fluorides

By D. Pilipovich and C. J. Schack

Received March 20, 1967

The action of chlorine fluorides on organic compounds has been reviewed with respect to the more quantitative aspects of chlorofluorination and the degree of competition between the chlorination and fluorination processes.¹ Since difluoramine is a readily oxidized compound² we were interested in studying the system HNF_2-ClF_x in order to determine whether general halogenation occurred and to what extent competition existed between the chlorination and the fluorination processes.

Experimental Section

Materials.—Chlorine monofluoride was prepared by heating an equimolar mixture of chlorine and fluorine to 150° for several hours in a stainless steel cylinder. The product was purified by vacuum fractionation prior to use. Chlorine trifluoride was purchased from the Matheson Co. and purified by the method of Schack, *et al.*³ Chlorine pentafluoride was prepared by the method of Pilipovich, *et al.*,⁴ which involved the fluorination of CsClF₄. Chlorine fluorides of high purity were essential. Freedom from chlorine oxides was most important since such impurities often caused the reactions with difluoramine to occur with an explosive deflagration. Difluoramine was generated from difluorourea as reported by Lawton, *et al.*⁵ Alkali fluorides were fused and then powdered in a drybox prior to use.

Apparatus.—Difluoramine was handled in a glass vacuum line and the chlorine fluorides in a stainless steel vacuum line fitted with Teflon U traps. Because difluoramine is decomposed by fluorine-passivated metal and the chlorine fluorides are difficult to manipulate in glass, the reactions of these materials were conducted in a Kel-F cylinder fitted with a Teflon valve. Reaction products were separated on the metal system.

Infrared spectra were taken on a Perkin-Elmer Infracord 137 using 5-cm Kel-F or stainless steel cells fitted with AgCl windows. Mixtures of chlorodifluoramine and tetrafluorohydrazine were not separable by fractional condensation and the relative proportions of such mixtures were determined by infrared absorbance measurements. Pure samples of ClNF₂ and N₂F₄ were employed to obtain the necessary coefficients. The experimental values are: ClNF₂, $a_{845cm^{-1}} = 7.2 \times 10^{-3}$ mm⁻¹ cm⁻¹ and $a_{655cm^{-1}} = 4.4 \times 10^{-3}$ mm⁻¹ cm⁻¹; N₂F₄, $a_{745cm^{-1}} = 2.3 \times 10^{-3}$ mm⁻¹ cm⁻¹. Errors in the analysis are probably on the order to 5% including the errors of gas volume measurements.

Reaction of ClF and HNF2.--After pretreating the Kel-F reactor with ClF₃, it was evacuated and attached to the glass vacuum line. Difluoramine (32.1 cm3, 1.43 mmol) was condensed into the reactor at -142° . The closed reactor was reattached to the metal vacuum line and CIF was condensed in at -142° , the quantity (32.0 cm³, 1.43 mmol) being measured by pressure difference since CIF has a low vapor pressure at this temperature. After 30 min at -78° , the product gases were separated by fractional condensation at -142 and -196° . The high-temperature fraction was found to be HF without any infrared-observable contaminants. The low-temperature sample (31.9 cm³) did not contain any unreacted ClF, but was composed of a mixture of 97% ClNF₂ and 3% N₂F₄. The latter may have arisen through incomplete reaction of the difluoramine and its subsequent decomposition in the metal line during fractionation6 or through decomposition of ClNF₂ to N₂F₄ and Cl₂ as reported by Petry.7

Reaction of ClF₃ and HNF₂.--Chlorine trifluoride (8.1 cm³, 0.362) minol) was condensed into the Kel-F reactor at -196° . The valve was closed and the reactor connected to the glass line from which HNF₂ (24.2 cm³, 1.07 mmol) was obtained by condensation at -142° . The reactor was then immersed in a bath cooled to -78° . After 30 min, the reactor was opened and the products were fractionated on the metal vacuum system. An infrared spectrum of the material trapped at -142° showed no Cl-F or N-F species but only HF. Similar inspection of the -196° condensate (16.2 cm³) revealed a 1:1 mixture of N_2F_4 and $ClNF_2$ with less than 1% NF₃. Replicate measurements showed 7.8 and 8.4 cm³ of ClNF₂ to be present in addition to 8.1 cm³ of N₂F₄. Thus the reaction was complete and nearly quantitative in a 1:3 ratio of ClF₃ to HNF₂. Several experiments were carried out with lesser amounts of either reactant. In these cases the reaction ratio of 1:3 was still observed and the excess reactant was recovered.

Reaction of ClF₅ and HNF₂.—A sample of ClF₅ (37.6 cm³, 1.68 mmol) was condensed into the reactor at -142° followed by HNF₂ (38.9 cm³, 1.73 mmol). The closed reactor was warmed to -78° for 10 min before fractionation of the products was initiated. Some noncondensable gas was produced but not measured. Most of the ClF₅ was recovered unreacted (28.4 cm³). No HNF₂ was recovered but 9.2 cm³ of ClNF₂, 15.1 cm³ of N₂F₄, and a trace of NF₃ were obtained along with 39 ml of HF. Thus, somewhat over 4 HNF₂ reacted for each ClF₅ producing 1 ClNF₂ and somewhat less than 2 N₂F₄.

⁽¹⁾ W. K. R. Musgrave, Advan. Fluorine Chem., 1, 18 (1960).

⁽²⁾ E. A. Lawton and J. Q. Weber, J. Am. Chem. Soc., 81, 4755 (1959).
(3) C. J. Schack, H. Dubb, and J. Quagliano, Jr., Chem. Ind. (London), 545 (1967).

⁽⁴⁾ D. Pilipovich, W. Maya, E. A. Lawton, H. F. Bauer, D. F. Sheehan, N. N. Ogimachi, R. D. Wilson, F. C. Gunderloy, and V. E. Bedwell, *Inorg. Chem.*, **6**, 1918 (1967).

⁽⁵⁾ E. A. Lawton, E. F. C. Cain, D. F. Sheehan, and M. Warner, J. Inorg. Nucl. Chem., 17, 188 (1961).

⁽⁶⁾ E. A. Lawton and J. Q. Weber, J. Am. Chem. Soc., 85, 3595 (1963).
(7) R. C. Petry, Abstracts, 138th National Meeting of the American Chemical Society, New York, N. Y., Sept 1960.

Results and Discussion

It was determined that the reaction of HNF_2 with pure ClF_3 proceeds rapidly and smoothly to yield chlorodifluoramine, $ClNF_2$, and tetrafluorohydrazine as in

$$ClF_3 + 3HNF_2 \longrightarrow ClNF_2 + N_2F_4 + 3HF$$
 (1)

Regardless of variation in experimental reactant ratios, ClNF₂ was smoothly generated according to eq 1. Although ClNF₂ was expected, the observed high yield obtained in these studies was of sufficient interest to determine the intermediates in the reaction. Since the reaction of chlorine and HNF₂ to form ClNF₂ is known to be slow,⁸ the failure to find Cl₂ as a product in the reaction, regardless of stoichiometry, shows that the reduction of ClF₃ does not proceed to Cl₂ with a subsequent reaction to form ClNF₂. In addition, data for the equilibrium involving Cl₂ and N₂F₄ precluded the formation of ClNF₂ from these ingredients.

Two routes to the formation of $ClNF_2$ from HNF_2 and ClF_3 were then considered and are visualized as

$$ClF_3 + HNF_2 \longrightarrow ClF_2NF_2 + HF$$
 (2a)

$$ClF_2NF_2 + 2HNF_2 \longrightarrow ClNF_2 + N_2F_4 + 2HF$$
 (2b)

$$ClF_3 + 2HNF_2 \longrightarrow ClF + 2HF + N_2F_4$$
 (3a)

$$ClF + HNF_2 \longrightarrow ClNF_2 + HF$$
 (3b)

Direct experimental evidence was obtained that strongly suggested the routes shown in (3a) and (3b). This was clearly demonstrated by mixing equivalent amounts of ClF and HNF₂ at -78° and obtaining ClNF₂ in near quantitative yields. A further check showed that the ClF-N₂F₄ system is unreactive and is therefore not responsible for ClNF₂ formation. Thus, in showing that HNF₂ rapidly reduces ClF₃ to ClF, a most convenient synthesis of ClNF₂ has been uncovered. These experiments do not preclude, however, an intermediate such as ClF₂NF₂.

The reaction of chlorine pentafluoride with HNF_2 also gave $CINF_2$ and N_2F_4 . Unlike the CIF_3 reaction at -78° , the CIF_5 reaction was not as precise with respect to the reproducibility of the reaction stoichiometry. At times, there appeared to be two distinct modes of reduction of CIF_5 occurring

$$ClF_{5} + 4HNF_{2} \longrightarrow ClF + 4HF + 2N_{2}F_{4}$$
(4)

$$ClF_5 + xHNF_2 \longrightarrow ClF_{5-2x} + xHF + xNF_3$$
 (5)

The degree to which the reactions shown in (4) and (5) are competitive was not determined. However, in those reactions where NF_3 formation was negligible the observed stoichiometry suggests that the mode of formation of $ClNF_2$ appears to be the same as that in ClF_3

$$ClF_5 + 5HNF_2 \longrightarrow ClNF_2 + 4HF + 2N_2F_4$$
(6)

Because of the rapidity of the reactions of HNF_2 with chlorine fluorides some moderating effect was sought through reaction studies involving complexes of either the chlorine fluoride or HNF_2 . For example, when BF_3 was used to complex either ClF_3 or HNF_2 , treatment with the other reagent at -78° gave a system that slowly produced ClNF₂ over a 4-day period. The complexes examined were HNF₂·BF₈, KF·KClF₄, RbClF₄, and ClF₂BF₄. The results of these as intermediates are unremarkable except that they all yielded ClNF₂ in varying amounts. From the rate of pressure increase at -78° , a definite order of reactivity of HNF₂ with the various chlorine fluorides and their complexes could be perceived. The relative order of reactivity appears to vary as

 $ClF_{3}-HNF_{2} > ClF_{6}-HNF_{2} \gg ClF_{8}-HNF_{2} \cdot BF_{3} > ClF_{2}BF_{4}-HNF_{2} > KF \cdot KClF_{4}-HNF_{2} \sim RbClF_{4}-HNF_{2}$

The place of the $ClF-HNF_2$ system in the series was not established.

Acknowledgment.—We are pleased to acknowledge support for this work by the Office of Naval Research, Power Branch.

Contribution from the Department of Chemistry, University of California, Berkeley, California 94720

Some Reactions of Silicon Dichloride

By P. L. TIMMS

Received May 24, 1967

The gaseous molecule silicon dichloride has been known for many years. Recently Teichmann and Wolf¹ have reported on the thermodynamics of the reaction Si + SiCl₄ = 2SiCl₂, and Schmeisser and Voss² and Schenk and Blocking³ have described some properties of the polymer (SiCl₂)_n.

There has, however, been no previous report of the chemistry of monomeric silicon dichloride, which is a "carbene-like" molecule and potentially very reactive toward many compounds. Gaseous silicon dichloride is unstable at ordinary temperatures. It either decomposes by direct polymerization to $(\text{SiCl}_2)_n$ or gives higher perchlorosilanes by reaction with any SiCl₄ which may also be present. At pressures of the order of 1 μ , the lifetime of the species SiCl₂ may be only a few milliseconds. This contrasts with the species SiF₂ which is stable for several minutes at 1 μ pressure and which does not react with SiF₄.⁴

In this work, silicon dichloride gas has been prepared at high temperatures from silicon and silicon tetrachloride at a pressure low enough to allow it to be transferred from the furnace to a liquid nitrogen cooled surface, without appreciable gas-phase polymerization or reaction. Under these conditions it has been possible to study some of the reactions of the molecule SiCl₂.

⁽¹⁾ R. Teichmann and E. Wolf, Z. Anorg. Allgem. Chem., 347, 145 (1966).

⁽²⁾ M. Schmeisser and P. Voss, *ibid.*, **334**, 50 (1964).

⁽³⁾ P. W. Schenk and H. Blocking, ibid., 334, 57 (1964).

⁽⁴⁾ P. L. Timms, R. A. Kent, T. D. Ehlert, and J. L. Margrave, J. Am. Chem. Soc., 87, 2824 (1965).